Demo: fMRI searchlight with naive bayes classifier

The data used here is available from http://cosmomvpa.org/datadb.zip

This example uses the following dataset: + 'digit' A participant made finger pressed with the index and middle finger of the right hand during 4 runs in an fMRI study. Each run was divided in 4 blocks with presses of each finger and analyzed with the GLM, resulting in 2*4*4=32 t-values

This example uses the cosmo_naive_bayes_classifier_searchlight, which is a fast alternative to using the regular searchlight with a crossvalidation measure and a classifier

  1. For CoSMoMVPA's copyright information and license terms, #
  2. see the COPYING file distributed with CoSMoMVPA. #

Contents

Set data paths

The function cosmo_config() returns a struct containing paths to tutorial data. (Alternatively the paths can be set manually without using cosmo_config.)

config=cosmo_config();

digit_study_path=fullfile(config.tutorial_data_path,'digit');
readme_fn=fullfile(digit_study_path,'README');
cosmo_type(readme_fn);

output_path=config.output_data_path;

% reset citation list
cosmo_check_external('-tic');
Overview
--------
fMRI responses to a human participant pressing buttons with the index and middle finger.

Contents
--------
- glm_T_stats_allruns+orig.{BRIK,HEAD}: 
    t-statistics associated with finger presses. 
    There are 4 runs, each with 4 blocks. 
    Each block has two t-statistics, one for each of button presses for the 
index and middle finger (in that order). 
- epi+orig.{HEAD,BRIK}:
    A single EPI image.
- icoXX_mh.YY.asc:
    Surface anatomy meshes of two hemispheres with standard topology, generated 
    using AFNI SUMA's MapIcosahedron. Left and right hemisphere surfaces were
    merged in the order left, right; the first half of the nodes and faces refer 
    to the left hemisphere, the second half to the right hemisphere.
    XX={16,64} is the number of linear divisions of MapIcosahedron; surfaces
    have (XX^2)*10+2 nodes and XX^2*20 faces in each hemisphere.
    YY={pial_al,white_al} are the outer and inner surfaces around the grey matter
    generated by FreeSurfer. YY=intermediate_al is the node-wise average of the
    pial and white surfaces; this surface can be used for single-surface
    analyses when surfaces are generated using Caret or BrainVoyager
    YY=inflated_alCoMmedial are inflated surfaces with the center of mass
    along the medial side of the two hemispheres. These surfaces are suitable
    for visualization purposes.

Methods
-------
This dataset contains data from a fingerpress experiment where a participant 
(28y right-handed male) pressed buttons on a box with the index and middle 
finger of the right  hand while fMRI volumes were acquired. Over four runs, in 
total sixteen blocks of 72s finger presses were acquired; in each block the 
participant pressed the index and middle finger during different `mini-blocks' 
of 8 s each. Each block was preceded and followed by a 16s rest period. 
Functional data was preprocessed in AFNI with despiking, time slice correction, 
motion correction, and scaling to percent signal change by dividing the signal 
for each volume by the mean of the run. No spatial smoothing or interpolation 
was applied to the functional data, except for interpolation during motion 
correction. The preprocessed data was analyzed with a general linear model 
(GLM) with separate regressors for each finger and each block (and some 
regressors of no interest) to obtain t-values for each finger in each block. 

License
-------
The contents are made available by Nikolaas N. Oosterhof <nikolaas.oosterhof 
|at| unitn.it> under the Creative Commons CC0 1.0 Universal Public Domain 
Dedication ("CC0"). See the LICENSE file for details, or visit 
http://creativecommons.org/publicdomain/zero/1.0/deed.en.

Contact
-------
Nikolaas N. Oosterhof <nikolaas.oosterhof |at| unitn.it>


LDA classifier searchlight analysis

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This analysis identified brain regions where the categories can be
% distinguished using an odd-even partitioning scheme and a Naive Bayes
% classifier.

data_path=digit_study_path;
data_fn=fullfile(data_path,'glm_T_stats_perblock+orig.HEAD');
mask_fn=fullfile(data_path,'brain_mask+orig.HEAD');

targets=repmat(1:2,1,16)';    % class labels: 1 2 1 2 1 2 1 2 1 2 ... 1 2
chunks=floor(((1:32)-1)/8)+1; % run labels:   1 1 1 1 1 1 1 1 2 2 ... 4 4

ds_per_run = cosmo_fmri_dataset(data_fn, 'mask', mask_fn,...
                                'targets',targets,'chunks',chunks);

% print dataset
fprintf('Dataset input:\n');
cosmo_disp(ds_per_run);


% set parameters for naive bayes searchlight (partitions) in a
% measure_args struct.
measure_args = struct();

% Set partition scheme. odd_even is fast; for publication-quality analysis
% nfold_partitioner is recommended.
% Alternatives are:
% - cosmo_nfold_partitioner    (take-one-chunk-out crossvalidation)
% - cosmo_nchoosek_partitioner (take-K-chunks-out  "             ").
measure_args.partitions = cosmo_oddeven_partitioner(ds_per_run);

% print measure and arguments
fprintf('Searchlight measure arguments:\n');
cosmo_disp(measure_args);

% Define a neighborhood with approximately 100 voxels in each searchlight.
nvoxels_per_searchlight=100;
nbrhood=cosmo_spherical_neighborhood(ds_per_run,...
                        'count',nvoxels_per_searchlight);
Dataset input:
.sa                                                                        
  .labels                                                                  
    { 'fi_i_R1_B01#0_Tstat'                                                
      'fi_m_R1_B01#0_Tstat'                                                
      'fi_i_R1_B02#0_Tstat'                                                
               :                                                           
      'fi_m_R4_B03#0_Tstat'                                                
      'fi_i_R4_B04#0_Tstat'                                                
      'fi_m_R4_B04#0_Tstat' }@32x1                                         
  .stats                                                                   
    { 'Ttest(168)'                                                         
      'Ttest(168)'                                                         
      'Ttest(168)'                                                         
           :                                                               
      'Ttest(168)'                                                         
      'Ttest(168)'                                                         
      'Ttest(168)' }@32x1                                                  
  .targets                                                                 
    [ 1                                                                    
      2                                                                    
      1                                                                    
      :                                                                    
      2                                                                    
      1                                                                    
      2 ]@32x1                                                             
  .chunks                                                                  
    [ 1                                                                    
      1                                                                    
      1                                                                    
      :                                                                    
      4                                                                    
      4                                                                    
      4 ]@32x1                                                             
.a                                                                         
  .vol                                                                     
    .mat                                                                   
      [ -2.5         0         0      71.2                                 
           0      -2.5         0       112                                 
           0         0       2.5        43                                 
           0         0         0         1 ]                               
    .dim                                                                   
      [ 61        84        41 ]                                           
    .xform                                                                 
      'scanner_anat'                                                       
  .fdim                                                                    
    .labels                                                                
      { 'i'                                                                
        'j'                                                                
        'k' }                                                              
    .values                                                                
      { [ 1         2         3  ...  59        60        61 ]@1x61        
        [ 1         2         3  ...  82        83        84 ]@1x84        
        [ 1         2         3  ...  39        40        41 ]@1x41 }      
.samples                                                                   
  [ -0.171      1.92     -2.74  ...  -0.0821      1.12     0.121           
    -0.547      2.95    -0.743  ...    -1.51     0.771    -0.555           
      3.08      3.48    -0.321  ...     2.82      1.13      1.65           
       :         :         :            :          :         :             
      1.93      1.72     -3.27  ...        0         0         0           
     0.688      1.22     -1.44  ...        0         0         0           
     0.495     0.601    -0.448  ...        0         0         0 ]@32x62454
.fa                                                                        
  .i                                                                       
    [ 38        34        35  ...  34        35        36 ]@1x62454        
  .j                                                                       
    [ 7         8         8  ...  49        49        49 ]@1x62454         
  .k                                                                       
    [ 5         5         5  ...  36        36        36 ]@1x62454         
Searchlight measure arguments:
.partitions                     
  .train_indices                
    { [  1         [  9         
         2           10         
         3           11         
         :            :         
        22           30         
        23           31         
        24 ]@16x1    32 ]@16x1 }
  .test_indices                 
    { [  9         [  1         
        10            2         
        11            3         
         :            :         
        30           22         
        31           23         
        32 ]@16x1    24 ]@16x1 }
+00:00:05 [####################] -00:00:00  mean size 100.0

Run the searchlight

nb_results = cosmo_naive_bayes_classifier_searchlight(ds_per_run,...
                                                nbrhood,measure_args);
+00:00:07 [####################] -00:00:00  

Show results

print output dataset

fprintf('Dataset output:\n');
cosmo_disp(nb_results);

% Plot the output
cosmo_plot_slices(nb_results);

% Define output location
output_fn=fullfile(output_path,'naive_bayes_searchlight+orig');

% Store results to disc
cosmo_map2fmri(nb_results, output_fn);

% Show citation information
cosmo_check_external('-cite');
Dataset output:
.a                                                                      
  .vol                                                                  
    .mat                                                                
      [ -2.5         0         0      71.2                              
           0      -2.5         0       112                              
           0         0       2.5        43                              
           0         0         0         1 ]                            
    .dim                                                                
      [ 61        84        41 ]                                        
    .xform                                                              
      'scanner_anat'                                                    
  .fdim                                                                 
    .labels                                                             
      { 'i'                                                             
        'j'                                                             
        'k' }                                                           
    .values                                                             
      { [ 1         2         3  ...  59        60        61 ]@1x61     
        [ 1         2         3  ...  82        83        84 ]@1x84     
        [ 1         2         3  ...  39        40        41 ]@1x41 }   
.fa                                                                     
  .nvoxels                                                              
    [ 100       104       103  ...  101        99       100 ]@1x62454   
  .radius                                                               
    [ 4.12      4.12      3.74  ...  4.12      4.12      4.12 ]@1x62454 
  .center_ids                                                           
    [ 1         2         3  ...  6.25e+04  6.25e+04  6.25e+04 ]@1x62454
  .i                                                                    
    [ 38        34        35  ...  34        35        36 ]@1x62454     
  .j                                                                    
    [ 7         8         8  ...  49        49        49 ]@1x62454      
  .k                                                                    
    [ 5         5         5  ...  36        36        36 ]@1x62454      
.samples                                                                
  [ 0.438     0.438     0.344  ...  0.594     0.594     0.594 ]@1x62454 
.sa                                                                     
  .labels                                                               
    { 'accuracy' }                                                      
If you use CoSMoMVPA and/or some other toolboxes for a publication, please cite:

Z. Saad, G. Chen. AFNI Matlab library. available online from https://github.com/afni/AFNI

N. N. Oosterhof, A. C. Connolly, J. V. Haxby (2016). CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in Matlab / GNU Octave. Frontiers in Neuroinformatics, doi:10.3389/fninf.2016.00027.. CoSMoMVPA toolbox available online from http://cosmomvpa.org

The Mathworks, Natick, MA, United States. Matlab 9.1.0.441655 (R2016b) (September 7, 2016). available online from http://www.mathworks.com