Contents

Dataset basics

  1. For CoSMoMVPA's copyright information and license terms, #
  2. see the COPYING file distributed with CoSMoMVPA. #
% Set data path, load dataset, set targets and chunks, and add labels as
% sample attributes

% Set the data path
config=cosmo_config();
data_path=fullfile(config.tutorial_data_path,'ak6','s01');

% Set the filename to the glm_T_stats_perrun NIFTI file; assign
% the filename to a variable named 'fn'
% >@@>
fn=fullfile(data_path,'glm_T_stats_perrun.nii');
% <@@<

% Load data using cosmo_fmri_dataset, and assign the result to a variable
% named 'ds'
% >@@>
ds = cosmo_fmri_dataset(fn);
% <@@<

% set ds.sa.targets (trial conditions) to the 60x1 column vector:
% [ 1 2 3 4 5 6 1 2 3 ... 5 6 ]'
% >@@>
targets=repmat((1:6)',10,1);
ds.sa.targets = targets;
% <@@<

% sanity check
cosmo_check_dataset(ds);

% set ds.sa.chunks (acquistion run number) to the 60x1 column vector:
% [ 1 1 1 1 1 1 2 2 2 ... 10 10 ]'
% >@@>
chunks = zeros(60,1);
for i=1:10
    idxs=(i-1)*6+(1:6);
    chunks(idxs)=i;
end
ds.sa.chunks = chunks;

% ( alternative:   ds.sa.chunks = ceil((1:60)'/6);     )
% <@@<

% sanity check
cosmo_check_dataset(ds);

% Add ds.sa.labels as sample attributes as a 60x1 cell with strings
% The order is {monkey, lemur, mallard, warbler, ladybug, and lunamoth},
% repeated 10 times
% >@@>
labels = repmat({   'monkey';
                    'lemur';
                    'mallard';
                    'warbler';
                    'ladybug';
                    'lunamoth'},10,1);
ds.sa.labels = labels;
% <@@<

% sanity check
cosmo_check_dataset(ds);

Overview of the dataset

fprintf('\nOverview of dataset:\n');
cosmo_disp(ds)
Overview of dataset:
.a                                                                   
  .vol                                                               
    .mat                                                             
      [ -3         0         0       121                             
         0         3         0      -114                             
         0         0         3     -11.1                             
         0         0         0         1 ]                           
    .xform                                                           
      'scanner_anat'                                                 
    .dim                                                             
      [ 80        80        43 ]                                     
  .fdim                                                              
    .labels                                                          
      { 'i'                                                          
        'j'                                                          
        'k' }                                                        
    .values                                                          
      { [ 1         2         3  ...  78        79        80 ]@1x80  
        [ 1         2         3  ...  78        79        80 ]@1x80  
        [ 1         2         3  ...  41        42        43 ]@1x43 }
.sa                                                                  
  .targets                                                           
    [ 1                                                              
      2                                                              
      3                                                              
      :                                                              
      4                                                              
      5                                                              
      6 ]@60x1                                                       
  .chunks                                                            
    [  1                                                             
       1                                                             
       1                                                             
       :                                                             
      10                                                             
      10                                                             
      10 ]@60x1                                                      
  .labels                                                            
    { 'monkey'                                                       
      'lemur'                                                        
      'mallard'                                                      
          :                                                          
      'warbler'                                                      
      'ladybug'                                                      
      'lunamoth' }@60x1                                              
.samples                                                             
  [ 0         0         0  ...  0         0         0                
    0         0         0  ...  0         0         0                
    0         0         0  ...  0         0         0                
    :         :         :       :         :         :                
    0         0         0  ...  0         0         0                
    0         0         0  ...  0         0         0                
    0         0         0  ...  0         0         0 ]@60x275200    
.fa                                                                  
  .i                                                                 
    [ 1         2         3  ...  78        79        80 ]@1x275200  
  .j                                                                 
    [ 1         1         1  ...  80        80        80 ]@1x275200  
  .k                                                                 
    [ 1         1         1  ...  43        43        43 ]@1x275200  

Apply mask to dataset

fn_mask=fullfile(data_path,'vt_mask.nii');

% Load mask using cosmo_fmri_dataset and store in ds_mask
% >@@>
ds_mask=cosmo_fmri_dataset(fn_mask);
% <@@<

% sanity check: ensure the same feature attributes
assert(isequal(ds_mask.fa,ds.fa));

% Now slice the dataset using cosmo_slice, where the third argument must be
% 2 to indicate the slicing of features (not samples).
% Assign the result to a variable 'ds_masked'.
% >@@>
mask_indices=find(ds_mask.samples);
ds_masked=cosmo_slice(ds, mask_indices, 2);
cosmo_disp(ds_masked);
% <@@<
.a                                                                   
  .vol                                                               
    .mat                                                             
      [ -3         0         0       121                             
         0         3         0      -114                             
         0         0         3     -11.1                             
         0         0         0         1 ]                           
    .xform                                                           
      'scanner_anat'                                                 
    .dim                                                             
      [ 80        80        43 ]                                     
  .fdim                                                              
    .labels                                                          
      { 'i'                                                          
        'j'                                                          
        'k' }                                                        
    .values                                                          
      { [ 1         2         3  ...  78        79        80 ]@1x80  
        [ 1         2         3  ...  78        79        80 ]@1x80  
        [ 1         2         3  ...  41        42        43 ]@1x43 }
.sa                                                                  
  .targets                                                           
    [ 1                                                              
      2                                                              
      3                                                              
      :                                                              
      4                                                              
      5                                                              
      6 ]@60x1                                                       
  .chunks                                                            
    [  1                                                             
       1                                                             
       1                                                             
       :                                                             
      10                                                             
      10                                                             
      10 ]@60x1                                                      
  .labels                                                            
    { 'monkey'                                                       
      'lemur'                                                        
      'mallard'                                                      
          :                                                          
      'warbler'                                                      
      'ladybug'                                                      
      'lunamoth' }@60x1                                              
.samples                                                             
  [ 0         0         0  ...  0.669      1.78      2.42            
    0         0         0  ...   1.06      1.61     0.943            
    0         0         0  ...   1.51      1.75      3.08            
    :         :         :         :          :        :              
    0         0         0  ...  0.491       1.1      1.78            
    0         0         0  ...  0.687      1.88      2.72            
    0         0         0  ...   2.86      4.04      4.28 ]@60x400   
.fa                                                                  
  .i                                                                 
    [ 51        53        54  ...  28        29        29 ]@1x400    
  .j                                                                 
    [ 24        24        24  ...  25        25        26 ]@1x400    
  .k                                                                 
    [ 2         2         2  ...  9         9         9 ]@1x400      

Now use cosmo_fmri_dataset with all input parameters

% We do exactly the same as above, but shorter:
% Load the dataset again using cosmo_fmri_dataset, but now use the
% 'mask','targets','chunks' parameters.
% Assign the result to ds_masked_alt
% >@@>
ds_masked_alt=cosmo_fmri_dataset(fn,'mask',fn_mask,...
                                'targets',targets,...
                                'chunks',chunks);
% <@@<

% set labels again
ds_masked_alt.sa.labels=labels;

% check ds_masked and ds_masked_alt are the same
assert(isequal(ds_masked_alt,ds_masked));