Searchlight for representational similarity analysis
Using cosmo_searchlight, run cross-validation with nearest neighbor classifier
- For CoSMoMVPA's copyright information and license terms, #
- see the COPYING file distributed with CoSMoMVPA. #
Contents
Define data
config=cosmo_config(); study_path=fullfile(config.tutorial_data_path,'ak6'); data_path=fullfile(study_path,'s01'); data_fn=fullfile(data_path,'glm_T_stats_perrun.nii'); mask_fn=fullfile(data_path,'brain_mask.nii'); targets=repmat(1:6,1,10)'; ds = cosmo_fmri_dataset(data_fn, ... 'mask',mask_fn,... 'targets',targets); % compute average for each unique target, so that the dataset has 6 % samples - one for each target ds=cosmo_fx(ds, @(x)mean(x,1), 'targets', 1); models_path=fullfile(study_path,'models'); load(fullfile(models_path,'behav_sim.mat')); load(fullfile(models_path,'v1_model.mat'));
Set measure
Set the 'measure' and 'measure_args' to use the @cosmo_target_dsm_corr_measure measure and set its parameters to so that the target_dsm is based on behav_sim.mat
% >@@> measure = @cosmo_target_dsm_corr_measure; measure_args = struct(); measure_args.target_dsm = behav; % <@@< % Enable centering the data measure_args.center_data=true;
Run searchlight
use spherical neighborhood of 100 voxels
voxel_count=100; % define a neighborhood using cosmo_spherical_neighborhood % >@@> nbrhood=cosmo_spherical_neighborhood(ds,'count',voxel_count); % <@@< % Run the searchlight % >@@> results = cosmo_searchlight(ds,nbrhood,measure,measure_args); % <@@< % Save the results to disc using the following command: output_path=config.output_data_path; cosmo_map2fmri(results, ... fullfile(output_path,'rsm_searchlight_behav.nii'));
+00:00:05 [####################] -00:00:00 mean size 99.8 +00:00:29 [####################] -00:00:00
Make a histogram of correlations
hist(results.samples,47)
Show some slices
cosmo_plot_slices(results);
Advanced exercise: regresion-based RSA
% Using @cosmo_target_dsm_corr_measure, investigate the relative % contributions of the v1-model and behavioural similarity matrix. % % Thus, set the 'measure' and 'measure_args' to use the % @cosmo_target_dsm_corr_measure measure and set its parameters % so that the 'glm_dsm' option uses the 'behav' and 'v1_model' targets % >@@> measure = @cosmo_target_dsm_corr_measure; measure_args = struct(); measure_args.glm_dsm = {behav, v1_model}; % <@@< % Enable centering the data measure_args.center_data=true;
Run searchlight
use spherical neighborhood of 100 voxels
voxel_count=100; % define a neighborhood using cosmo_spherical_neighborhood % >@@> nbrhood=cosmo_spherical_neighborhood(ds,'count',voxel_count); % <@@< % Run the searchlight % >@@> glm_dsm_results = cosmo_searchlight(ds,nbrhood,measure,measure_args); % <@@< % Save the results to disc using the following command: output_path=config.output_data_path; cosmo_map2fmri(glm_dsm_results, ... fullfile(output_path,'rsm_searchlight_glm_behav-v1.nii'));
+00:00:06 [####################] -00:00:00 mean size 99.8 +00:01:05 [####################] -00:00:00
Show behavioural seachrlight map
figure(); cosmo_plot_slices(cosmo_slice(glm_dsm_results,1));
Show V1 searchlight map
figure(); cosmo_plot_slices(cosmo_slice(glm_dsm_results,2));