function predicted=cosmo_classify_nn(samples_train, targets_train, samples_test, unused)
% nearest neighbor classifier
%
% predicted=cosmo_classify_nn(samples_train, targets_train, samples_test[, opt])
%
% Inputs:
% samples_train PxR training data for P samples and R features
% targets_train Px1 training data classes
% samples_test QxR test data
% opt (currently ignored)
%
% Output:
% predicted Qx1 predicted data classes for samples_test
%
% Example:
% ds=cosmo_synthetic_dataset('ntargets',5,'nchunks',15);
% test_chunk=1;
% te=cosmo_slice(ds,ds.sa.chunks==test_chunk);
% tr=cosmo_slice(ds,ds.sa.chunks~=test_chunk);
% pred=cosmo_classify_nn(tr.samples,tr.sa.targets,te.samples,struct);
% % show targets and predicted labels (100% accuracy)
% disp([te.sa.targets pred])
% %|| 1 1
% %|| 2 2
% %|| 3 3
% %|| 4 4
% %|| 5 5
%
% See also: cosmo_crossvalidate, cosmo_crossvalidation_measure
%
% # For CoSMoMVPA's copyright information and license terms, #
% # see the COPYING file distributed with CoSMoMVPA. #
[ntrain, nfeatures]=size(samples_train);
[ntest, nfeatures_]=size(samples_test);
ntrain_=numel(targets_train);
if nfeatures~=nfeatures_ || ntrain_~=ntrain, error('illegal input size'); end
% allocate space for output
predicted=zeros(ntest,1);
for k=1:ntest
% for each sample in the test set:
%
% - compute its squared euclidian distance to each sample in
% the train set, and store this in a vector
% squared_distances (which must have size ntrain x 1).
% For two vectors a=[a_1, a_2, ..., a_N] and b=[b_1, b_2, ..., b_N],
% the squared euclidean distance between a and b is:
% (a_1 - b_1)^2 + (a_2 - b_2)^2 + ... + (a_N - b_N)^2
%
% - assign the class label of the sample in the training set that has
% the smallest squared distance.
%
% compute difference to each sample in the training set
delta=bsxfun(@minus, samples_train, samples_test(k,:));
% compute distance (sqrt is unnecessary because monotonic)
squared_distances=sum(delta.^2,2);
% the following code is equivalent to (but slower than) the code above:
% squared_distances=zeros(ntrain,1);
% for j=1:ntrain
% elementwise_delta=samples_train(j,:)-samples_test(j,:);
% squared_elementwise_delta=elementwise_delta.^2;
% squared_distance=sum(squared_elementwise_delta);
% squared_distances(j)=squared_distance;
% end
[unused, i]=min(squared_distances);
predicted(k)=targets_train(i);
end