function ds_sa = cosmo_crossvalidation_measure(ds, varargin)
% performs cross-validation using a classifier
%
% accuracy = cosmo_cross_validation_accuracy_measure(dataset, args)
%
% Inputs:
% dataset struct with fields .samples (PxQ for P samples and
% Q features) and .sa.targets (Px1 labels of samples)
% args struct containing classifier, partitions, and
% possibly other fields that are given to the
% classifier.
% args.classifier function handle to classifier, e.g.
% @cosmo_classify_lda
% args.partitions Partition scheme, for example the output from
% cosmo_nfold_partitioner
% args.output One of:
% - 'accuracy': overall classificationa
% accuracy (default)
% - 'balanced_accuracy' classificationa accuracy is
% computed for each class,
% then averaged
% - 'fold_accuracy' classification accuracy is
% computed for each fold
% - 'winner_predictions' class that was predicted
% for each sample in the test
% set; in the case of
% multiple predictions, ties
% are decided in
% pseudo-random fashion by
% cosmo_winner_indices. The
% output .samples field
% contains predicted labels.
% - 'fold_predictions' prediction for each sample
% in each fold. The
% output .samples field
% contains predicted labels.
% With this option, the
% output has a field
% .sa.folds
% args.check_partitions optional (default: true). If set to false then
% partitions are not checked for being set
% properly.
% args.normalization optional, one of 'zscore','demean','scale_unit'
% to normalize the data prior to classification using
% zscoring, demeaning or scaling to [-1,1] along the
% first dimension of ds. Normalization parameters are
% estimated using the training data and applied to
% the testing data (for each feature separately).
% .pca_explained_count optional, transform the data with PCA prior to
% classification, and retain this number of
% components
% .pca_explained_ratio optional, transform the data with PCA prior to
% classification, and retain the components that
% explain this percentage of the variance
% (value between 0-1)
% args.average_train_X average the samples in the train set using
% cosmo_average_samples. For X, use any parameter
% supported by cosmo_average_samples, i.e. either
% 'count' or 'ratio', and optionally, 'resamplings'
% or 'repeats'.
%
% Output:
% ds_sa Struct with fields:
% .samples Scalar with classification accuracy, or vector with
% predictions for the input samples.
% .sa Struct with field:
% - if args.output=='accuracy':
% .labels =={'accuracy'}
% - if args.output=='predictions'
% .targets } Px1 true and predicted labels of
% .predictions } each sample
%
% Examples:
% ds=cosmo_synthetic_dataset('ntargets',3,'nchunks',4);
% %
% % use take-1-chunk for testing crossvalidation
% opt=struct();
% opt.partitions=cosmo_nfold_partitioner(ds);
% opt.classifier=@cosmo_classify_naive_bayes;
% % run crossvalidation and return accuracy (the default)
% acc_ds=cosmo_crossvalidation_measure(ds,opt);
% cosmo_disp(acc_ds);
% %|| .samples
% %|| [ 0.917 ]
% %|| .sa
% %|| .labels
% %|| { 'accuracy' }
%
% % let the measure return predictions instead of accuracy,
% % and use take-1-chunks out for testing crossvalidation;
% % use LDA classifer and let targets be in range 7..9
% ds=cosmo_synthetic_dataset('ntargets',3,'nchunks',4,'target1',7);
% opt=struct();
% opt.partitions=cosmo_nchoosek_partitioner(ds,1);
% opt.output='winner_predictions';
% opt.classifier=@cosmo_classify_lda;
% pred_ds=cosmo_crossvalidation_measure(ds,opt);
% %
% % show results. Because each sample was predicted just once,
% % .sa.chunks contains the chunks of the original input
% cosmo_disp(pred_ds);
% %|| .samples
% %|| [ 9
% %|| 8
% %|| 9
% %|| :
% %|| 7
% %|| 9
% %|| 7 ]@12x1
% %|| .sa
% %|| .targets
% %|| [ 7
% %|| 8
% %|| 9
% %|| :
% %|| 7
% %|| 8
% %|| 9 ]@12x1
% %||
% %
% % return accuracy, but use z-scoring on each training set
% % and apply the estimated mean and std to the test set.
% % Use take-2-chunks out for corssvalidation
% ds=cosmo_synthetic_dataset('ntargets',3,'nchunks',4);
% opt=struct();
% opt.output='accuracy';
% opt.normalization='zscore';
% opt.classifier=@cosmo_classify_lda;
% opt.partitions=cosmo_nchoosek_partitioner(ds,2);
% z_acc_ds=cosmo_crossvalidation_measure(ds,opt);
% cosmo_disp(z_acc_ds);
% %|| .samples
% %|| [ 0.75 ]
% %|| .sa
% %|| .labels
% %|| { 'accuracy' }
%
% % illustrate accuracy for partial test set
% ds=cosmo_synthetic_dataset('ntargets',2,'nchunks',5);
% %
% % use take-1-chunk out for testing crossvalidation, but only test on
% % chunks 2 and 4
% opt=struct();
% opt.partitions=cosmo_nchoosek_partitioner(ds,1,'chunks',[2 4]);
% opt.classifier=@cosmo_classify_naive_bayes;
% % run crossvalidation and return accuracy (the default)
% acc_ds=cosmo_crossvalidation_measure(ds,opt);
% % show accuracy
% cosmo_disp(acc_ds.samples)
% %|| 0.75
% % show predictions
% opt.output='winner_predictions';
% pred_ds=cosmo_crossvalidation_measure(ds,opt);
% cosmo_disp([pred_ds.samples pred_ds.sa.targets],'threshold',inf);
% %|| [ NaN 1
% %|| NaN 2
% %|| 1 1
% %|| 2 2
% %|| NaN 1
% %|| NaN 2
% %|| 1 1
% %|| 1 2
% %|| NaN 1
% %|| NaN 2 ]
%
% % return predictions for each fold, using output='fold_predictions'.
% % The output has now multiple predictions for each original input
% % sample.
% ds=cosmo_synthetic_dataset('ntargets',3,'nchunks',4,'target1',7);
% opt=struct();
% % use take-two-chunks-for-testing crossvalidation, resuling in
% % nchoosek(4,2)=6 folds
% opt.partitions=cosmo_nchoosek_partitioner(ds,2);
% cosmo_disp(opt.partitions);
% %|| .train_indices
% %|| { [ 7 [ 4 [ 4 [ 1 [ 1 [ 1
% %|| 8 5 5 2 2 2
% %|| 9 6 6 3 3 3
% %|| 10 10 7 10 7 4
% %|| 11 11 8 11 8 5
% %|| 12 ] 12 ] 9 ] 12 ] 9 ] 6 ] }
% %|| .test_indices
% %|| { [ 1 [ 1 [ 1 [ 4 [ 4 [ 7
% %|| 2 2 2 5 5 8
% %|| 3 3 3 6 6 9
% %|| 4 7 10 7 10 10
% %|| 5 8 11 8 11 11
% %|| 6 ] 9 ] 12 ] 9 ] 12 ] 12 ] }
% %
% % set output to return predictions for each fold
% opt.output='fold_predictions';
% opt.classifier=@cosmo_classify_lda;
% pred_ds=cosmo_crossvalidation_measure(ds,opt);
% to_show={pred_ds.samples,pred_ds.sa.targets,pred_ds.sa.folds};
% cosmo_disp(to_show,'edgeitems',8)
% %|| { [ 9 [ 7 [ 1
% %|| 8 8 1
% %|| 9 9 1
% %|| 7 7 1
% %|| 8 8 1
% %|| 9 9 1
% %|| 9 7 2
% %|| 8 8 2
% %|| : : :
% %|| 8 8 5
% %|| 7 9 5
% %|| 7 7 6
% %|| 8 8 6
% %|| 9 9 6
% %|| 7 7 6
% %|| 9 8 6
% %|| 7 ]@36x1 9 ]@36x1 6 ]@36x1 }
%
% Notes:
% - using this function, crossvalidation can be run using a searchlight
%
% See also: cosmo_searchlight, cosmo_average_samples
%
% # For CoSMoMVPA's copyright information and license terms, #
% # see the COPYING file distributed with CoSMoMVPA. #
% deal with input arguments
params=cosmo_structjoin('output','accuracy',... % default output
varargin); % use input arguments
% Run cross validation to get the accuracy (see the help of
% cosmo_crossvalidate)
%%%% >>> Your code here <<< %%%%
ds_sa=struct();
output=params.output;
switch output
case 'accuracy'
ds_sa.samples=accuracy;
ds_sa.sa.labels={'accuracy'};
case 'balanced_accuracy'
ds_sa.samples=compute_balanced_accuracy(pred,ds.sa.targets);
ds_sa.sa.labels={'balanced_accuracy'};
case {'predictions','raw','winner_predictions'}
if cosmo_match({output},{'predictions','raw'})
cosmo_warning('CoSMoMVPA:deprecated',...
sprintf(...
['Output option ''%s'' is deprecated and will '...
'be removed from a future release. Please use '...
'output=''winner_predictions'' instead, or use '...
'output=''fold_predictions'' to get '...
'predictions for each fold'],...
output));
end
ds_sa.samples=compute_winner_predictions(pred);
ds_sa.sa=rmfield(ds.sa,'chunks');
case 'fold_accuracy'
[ds_sa.samples,ds_sa.sa.folds]=compute_fold_accuracy(pred,...
ds.sa.targets);
case 'fold_predictions'
ds_sa=struct();
[ds_sa.samples,...
ds_sa.sa.folds,...
ds_sa.sa.targets]=compute_fold_predictions(pred,...
ds.sa.targets);
case 'accuracy_by_chunk'
error(['Output ''%s'' is not supported anymore. Consider '...
'using ''fold_predictions'' whenever this is '...
'implemented'], output);
otherwise
error('Illegal output parameter %s', params.output);
end
function [accs,folds]=compute_fold_accuracy(pred,targets)
is_correct=bsxfun(@eq,pred,targets);
has_pred=~isnan(pred);
accs=(sum(is_correct,1) ./ sum(has_pred,1))';
folds=(1:numel(accs))';
function [fold_pred,folds,fold_targets]=compute_fold_predictions(pred,...
targets)
nfolds=size(pred,2);
pred_cell=cell(nfolds,1);
fold_cell=cell(nfolds,1);
target_cell=cell(nfolds,1);
has_pred=~isnan(pred);
fold_pred_count=sum(has_pred,1);
for i_fold=1:nfolds
msk=has_pred(:,i_fold);
pred_cell{i_fold}=pred(msk,i_fold);
fold_cell{i_fold}=zeros(fold_pred_count(i_fold),1)+i_fold;
target_cell{i_fold}=targets(msk);
end
fold_pred=cat(1,pred_cell{:});
folds=cat(1,fold_cell{:});
fold_targets=cat(1,target_cell{:});
2;
function winner_pred=compute_winner_predictions(pred)
[winner_pred,classes]=cosmo_winner_indices(pred);
has_pred=~isnan(winner_pred);
winner_pred(has_pred)=classes(winner_pred(has_pred));
function acc=compute_balanced_accuracy(pred,targets)
[class_idx,classes]=cosmo_index_unique(targets);
nclasses=numel(classes);
each_class_acc=zeros(nclasses,1);
% some samples may be without predictions (and are set to NaN
% by cosmo_crossvalidate). Consider only the samples with
% predictions, and compute for each class the classification
% accuracy
has_prediction = ~isnan(pred);
has_any_prediction=any(has_prediction,2);
for c=1:nclasses
idx=class_idx{c};
keep_idx=idx(has_any_prediction(idx));
n_in_class=numel(keep_idx);
class_accs=NaN(n_in_class,1);
for j=1:n_in_class;
row=keep_idx(j);
has_row_prediction=has_prediction(row,:);
if ~any(has_row_prediction)
continue;
end
is_correct=pred(row,:)==targets(row);
class_accs(j)=sum(is_correct) / sum(has_row_prediction);
end
non_nan=~isnan(class_accs);
each_class_acc(c)=sum(class_accs(non_nan))/sum(non_nan);
end
acc=mean(each_class_acc,1);