function partitions = cosmo_nfold_partitioner(chunks)
% generates an n-fold partition scheme
%
% partitions=cosmo_nfold_partitioner(chunks)
%
% Input
% - chunks Px1 chunk indices for P samples. It can also be a
% dataset with field .sa.chunks
%
% Output:
% - partitions A struct with fields .train_indices and .test_indices.
% Each of these is an 1xQ cell for Q partitions, where
% .train_indices{k} and .test_indices{k} contain the
% sample indices for the k-th fold.
%
% Example:
% % simple partitioning scheme with 3 chunks with two samples each
% % (chunk values are not necessarily in increasing order)
% p=cosmo_nfold_partitioner([3 1 2 3 2 1]);
% cosmo_disp(p);
% %|| .train_indices
% %|| { [ 1 [ 1 [ 2
% %|| 3 2 3
% %|| 4 4 5
% %|| 5 ] 6 ] 6 ] }
% %|| .test_indices
% %|| { [ 2 [ 3 [ 1
% %|| 6 ] 5 ] 4 ] }
%
% % show the same with a dataset struct
% ds=struct();
% ds.samples=randn(6,99); % 6 samples, 99 features
% ds.sa.targets=[1 2 1 2 1 2]'; % conditions; ignored by this function
% ds.sa.chunks=[3 1 2 3 2 1]'; % used for partitioning
% p=cosmo_nfold_partitioner(ds);
% cosmo_disp(p);
% %|| .train_indices
% %|| { [ 1 [ 1 [ 2
% %|| 3 2 3
% %|| 4 4 5
% %|| 5 ] 6 ] 6 ] }
% %|| .test_indices
% %|| { [ 2 [ 3 [ 1
% %|| 6 ] 5 ] 4 ] }
%
%
% % Example of an unbalanced partitioning scheme. Generally it is
% % advised to balance the partitions before using them for MVPA.
% % (see cosmo_balance_partitions)
% ds=struct();
% ds.samples=randn(7,99); % 7 samples (1 extra), 99 features
% ds.sa.targets=[1 2 1 2 1 2 2]';
% ds.sa.chunks= [1 1 3 3 3 3 3]';
% p=cosmo_nfold_partitioner(ds);
% cosmo_disp(p);
% %|| .train_indices
% %|| { [ 3 [ 1
% %|| 4 2 ]
% %|| 5
% %|| 6
% %|| 7 ] }
% %|| .test_indices
% %|| { [ 1 [ 3
% %|| 2 ] 4
% %|| 5
% %|| 6
% %|| 7 ] }
%
%
% Note:
% - for cross-validation it is recommended to balance partitions using
% cosmo_balance_partitions.
% - More advanced partitining is provided by cosmo_nchoosek_partitioner.
%
% See also: cosmo_balance_partitions, cosmo_nchoosek_partitioner
%
% # For CoSMoMVPA's copyright information and license terms, #
% # see the COPYING file distributed with CoSMoMVPA. #
if isstruct(chunks)
if cosmo_isfield(chunks,'sa.chunks',true)
chunks=chunks.sa.chunks;
end
end
unq=unique(chunks);
nchunks=numel(unq);
% allocate space for output
train_indices=cell(1,nchunks);
test_indices=cell(1,nchunks);
% set the training and test indices for each chunk
for k=1:nchunks
%%%% >>> Your code here <<< %%%%
end
partitions.train_indices=train_indices;
partitions.test_indices=test_indices;