function partitions = cosmo_oddeven_partitioner(ds, type)
% generates an odd-even partition scheme
%
% partitions=cosmo_oddeven_partitioner(chunks,[type])
%
% Input
% ds dataset struct with field .ds.chunks.
% type One of:
% - 'full': two partitions are returned, training on odd
% unique chunks and testing on even unique chunks,
% and vice versa (default). A typical use case is
% classification analysis (using
% cosmo_crossvalidation_measure)
% - 'half': a single partition is returned, training on
% odd unique chunks and testing on even unique chunks
% only. A typical use case is split-half
% correlation analysis (using
% cosmo_correlation_measure) because correlations are
% symmetric (i.e. corr(a,b)==corr(b,a) for column
% vectors a and b)
%
% Output:
% partitions A struct with fields .train_indices and .test_indices.
% Each of these is an Nx1 cell (N=1 when type='half',
% N=2 when type='full'.).
% .train_indices{k} and .test_indices{k} contain the
% sample indices for the sets of unique chunks
% alternatingly
%
% Example:
% ds=struct();
% ds.samples=NaN(8,99); % will be ignored by this function
% ds.sa.targets=[8 9 8 9 8 9 8 9]';
% ds.sa.chunks=[1 1 2 2 6 7 7 6]';
% p=cosmo_oddeven_partitioner(ds);
% % note that chunks=6 ends up in the odd chunks and chunks=7 in the
% % even chunks, as 6 [7] is the third [fourth] unique value of chunks.
% cosmo_disp(p);
% %|| .train_indices
% %|| { [ 1 [ 3
% %|| 2 4
% %|| 5 6
% %|| 8 ] 7 ] }
% %|| .test_indices
% %|| { [ 3 [ 1
% %|| 4 2
% %|| 6 5
% %|| 7 ] 8 ] }
% %||
% %
% % only half-partition (for correlation-based analysis)
% p=cosmo_oddeven_partitioner(ds,'half');
% cosmo_disp(p);
% %|| .train_indices
% %|| { [ 1
% %|| 2
% %|| 5
% %|| 8 ] }
% %|| .test_indices
% %|| { [ 3
% %|| 4
% %|| 6
% %|| 7 ] }
%
% Notes:
% - typically, the 'half' option can be used with
% cosmo_correlation_measure, because correlations are symmetric; the
% 'full' option can be used with cosmo_crossvalidation_measure.
% - this function returns partitions based on the sorted unique values
% in chunks, not the chunk values themselves. For example, if the
% sorted unique values of .sa.chunks are [2,4,5,8], then the values
% 2 and 5 are at the 'odd' position (1 and 3), and 4 and 8 are at the
% 'even' position.
%
% See also: cosmo_nchoosek_partitioner
%
% # For CoSMoMVPA's copyright information and license terms, #
% # see the COPYING file distributed with CoSMoMVPA. #
chunks=get_chunks(ds);
if nargin<2 || isempty(type)
type='full';
end
switch type
case 'full'
do_half_partition=false;
case 'half'
do_half_partition=true;
otherwise
error('illegal type: must be ''full'' or ''half''');
end
indices=cosmo_index_unique(chunks);
nparts=numel(indices);
if nparts<2
error('Need >=2 chunks, found %d', numel(indices));
end
% there are two partitions, unless do_half_partition in which case
% there is one
if do_half_partition
npartitions=1;
else
npartitions=2;
end
% allocate space for output
train_indices=cell(1,npartitions);
test_indices=cell(1,npartitions);
% Make partitions using even and odd chunks
%%%% >>> Your code here <<< %%%%
partitions.train_indices=train_indices;
partitions.test_indices=test_indices;
% final check to make sure all is kosher (including balanced-ness)
cosmo_check_partitions(partitions,ds);
function ds=get_chunks(ds)
if isnumeric(ds) && isvector(ds)
% direct numeric
return
elseif isstruct(ds)
if cosmo_isfield(ds,'sa.chunks')
ds=ds.sa.chunks;
return
end
end
error(['illegal input: expected dataset struct with field '...
'.sa.chunks, or numeric vector']);