run sphere offsets searchlight¶
Matlab output: run_sphere_offsets_searchlight
%% Searchlight analysis in the volume
%
% This analysis is quite bare-bones - data is simulated to come directly
% from load_nii rather than through fmri_dataset, and voxel indices in each
% searchlight are computed directly in this script rather than using
% a helper function such as spherical_voxel_selection.
%
% Note: for running searchlights it is recommended to use
% cosmo_searchlight and cosmo_spherical_neighborhood
%
% # For CoSMoMVPA's copyright information and license terms, #
% # see the COPYING file distributed with CoSMoMVPA. #
%% Define input files and searchlight radius
radius=3; % in voxel units
config=cosmo_config();
data_path=fullfile(config.tutorial_data_path,'ak6','s01');
half1_fn=fullfile(data_path,'glm_T_stats_odd.nii');
half2_fn=fullfile(data_path,'glm_T_stats_even.nii');
mask_fn=fullfile(data_path,'brain_mask.nii');
%% Load the data and extract the data in the mask
ni_samples1=load_nii(half1_fn);
ni_samples2=load_nii(half2_fn);
ni_mask=load_nii(mask_fn);
% Get the volume data
half1_samples=ni_samples1.img;
half2_samples=ni_samples2.img;
mask=ni_mask.img;
% combine the two halves, and define the masks
samples=cat(4, half1_samples, half2_samples);
nsamples=size(samples,4); % should be 6
half1_samples_mask=(1:nsamples)<=nsamples/2;
half2_samples_mask=~half1_samples_mask;
%% Searchlight data 'contrast' definition
% Define how correlations values are going to be weighted
% mean zero, positive on diagonal, negative elsewhere.
% Note that this matrix has a mean of zero, so under the null hypothesis
% that correlations are equal on and off the diagonal, weighting these
% correlations by the contrast matrix and then summing them should
% give a mean of zero as well.
contrast_matrix=eye(6)-1/6;
%% Define voxel offset positions in the searchlight
% get the sphere offsets
sphere_offsets=cosmo_sphere_offsets(radius);
noffsets=size(sphere_offsets,1);
%% Prepare for output
% allocate space for data in searchlight once, then overwrite in for-loop below
sphere_data=zeros(nsamples,noffsets);
voldim=size(mask);
output=zeros(voldim);
visited=false(voldim);
%% Run the searchlight
% for pretty progress reporting
prev_msg='';
clock_start=clock();
% run over voxels in all three spatial dimensions
for ii=1:voldim(1)
for jj=1:voldim(2)
for kk=1:voldim(3)
% if outside the mask, continue with next voxel
if ~mask(ii,jj,kk)
continue
end
% fill up the sphere_data matrix with data from the sphere
% centered around location (ii, jj, kk).
% for every valid position increment row_pos first, then
% fill it with the sample data for of that position.
% (a valid position p=[i, j, k] has 1 <= p(m) <= voldim(m) for
% m=1, 2 and 3, and is not outside the mask).
row_pos=0;
sphere_data(:)=NaN; % not necessary, but used to check validity of data
for mm=1:noffsets
ii_pos=ii+sphere_offsets(mm,1);
jj_pos=jj+sphere_offsets(mm,2);
kk_pos=kk+sphere_offsets(mm,3);
if ii_pos<1 || ii_pos>voldim(1) || ...
jj_pos<1 || kk_pos>voldim(2) || ...
kk_pos<1 || kk_pos>voldim(3) || ...
~mask(ii_pos,jj_pos,kk_pos)
continue
end
% go one position down
row_pos=row_pos+1;
% overwrite existing data
sphere_data(:,row_pos)=samples(ii_pos, jj_pos, kk_pos, :);
end
%<@@<
% get data only as far down as we got voxels.
selected_sphere_data=sphere_data(:, 1:row_pos);
% a little sanity check
if any(isnan(selected_sphere_data))
error('found NaN - this should not happen');
end
% take the data from the two halves using the
% half_{1,2}samples_mask
% >@@>
half1=selected_sphere_data(half1_samples_mask,:);
half2=selected_sphere_data(half2_samples_mask,:);
% Compute correlations, fisher transform, then weigh them.
% Store the sum of the weighted transformed correlations in the
% 'output' array.
%
% Use cosmo_corr instead of corr for faster computations
c=cosmo_corr(half1',half2');
fisher_c=atanh(c);
weighted_c=contrast_matrix.*fisher_c;
output(ii,jj,kk)=sum(weighted_c(:));
% set this voxel as visited
visited(ii,jj,kk)=true;
end
end
% Keep us updated on progress
msg=sprintf('%d slices: mean %.3f', ii, mean(output(visited)));
prev_msg=cosmo_show_progress(clock_start,ii/voldim(1),msg,prev_msg);
end
%% Save the results
ni_output=ni_samples1;
ni_output.img=output;
ni_output.hdr.dime.dim(5)=1;
% use the following lines to store the output as a NIFTI file
% >> save_nii(ni_output,fullfile(data_path,'sphere_offsets_searchlight.nii'));
%% Plot the results as axial slices
nslices=voldim(3);
nrows=floor(.8*sqrt(nslices));
ncols=ceil(nslices/nrows);
output_range=[-1 1]*2;
for k=1:nslices
subplot(nrows, ncols, k);
% orient with top side anterior
imagesc(output(:,end:-1:1,k)', output_range);
title(sprintf('slice %d', k));
axis off
end