References¶
Connolly, A. C., Guntupalli, J. S., Gors, J., Hanke, M., Halchenko, Y. O., Wu, Y. C., Abdi, H., and Haxby, J. V. The Representation of Biological Classes in the Human Brain. Journal of Neuroscience, 32(8):2608–2618, February 2012.
Cox, D. D. and Savoy, R. L. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2 Pt 1):261–270, 2003.
Delorme, A. and Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1):9–21, March 2004.
Diedrichsen, J. and Kriegeskorte, N. Representational models: a common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS computational biology, 13(4):e1005508, 2017.
Edelman, S., Grill-Spector, K., Kushnir, T., and Malach, R. Toward direct visualization of the internal shape representation space by fMRI. Psychobiology, 26(4):309–321, 1998.
Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., and Pollmann, S. PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7(1):37–53, 2009. doi:10.1007/s12021-008-9041-y.
Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W., Herrmann, C. S., Haxby, J. V., Hanson, S. J., and Pollmann, S. PyMVPA: A Unifying Approach to the Analysis of Neuroscientific Data. Frontiers in neuroinformatics, 3:3, 2009.
Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., and Bießmann, F. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage, 87:96–110, 2014.
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini, P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539):2425–2430, September 2001.
Kaiser, D., Oosterhof, N. N., and Peelen, M. V. The neural dynamics of attentional selection in natural scenes. Journal of neuroscience, 36(41):10522–10528, 2016.
King, J.-R. and Dehaene, S. Characterizing the dynamics of mental representations: the temporal generalization method. Trends in cognitive sciences, 2014.
Kriegeskorte, N., Goebel, R., and Bandettini, P. Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103(10):3863–3868, March 2006.
Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., and Bandettini, P. A. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6):1126–1141, December 2008.
Ledoit, O. and Wolf, M. Honey, i shrunk the sample covariance matrix. The Journal of Portfolio Management, 30(4):110–119, 2004. doi:10.3905/jpm.2004.110.
Leske, S., Tse, A., Oosterhof, N. N., Hartmann, T., Müller, N., Keil, J., and Weisz, N. The strength of alpha and beta oscillations parametrically scale with the strength of an illusory auditory percept. NeuroImage, 88:69–78, March 2014.
Mur, M., Bandettini, P. A., and Kriegeskorte, N. Revealing representational content with pattern-information fMRI–an introductory guide. Social cognitive and affective neuroscience, 4(1):101–109, 2009.
Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in cognitive sciences, 10(9):424–430, 2006. doi:10.1016/j.tics.2006.07.005.
Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011:156869, 2011.
Oosterhof, N. N., Connolly, A. C., and Haxby, J. V. CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in Matlab / GNU Octave. Frontiers in Neuroinformatics, 2016. doi:10.3389/fninf.2016.00027.
Oosterhof, N. N., Tipper, S. P., and Downing, P. E. Visuo-motor imagery of specific manual actions: A multi-variate pattern analysis fMRI study. NeuroImage, 63(1):262–271, October 2012.
Oosterhof, N. N., Wiestler, T., Downing, P. E., and Diedrichsen, J. A comparison of volume-based and surface-based multi-voxel pattern analysis. NeuroImage, 56(2):593–600, May 2011.
Oosterhof, N. N., Wiggett, A. J., Diedrichsen, J., tipper, S. P., and Downing, P. E. Surface-based information mapping reveals crossmodal vision-action representations in human parietal and occipitotemporal cortex. Journal of neurophysiology, 104(2):1077–1089, August 2010.
Peelen, M. V., Wiggett, A. J., and Downing, P. E. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron, 49(6):815–822, 2006. doi:doi:10.1016/j.neuron.2006.02.004.
Pereira, F., Mitchell, T., and Botvinick, M. Machine learning classifiers and fMRI: A tutorial overview. NeuroImage, 45(1):S199–S209, 2009. doi:10.1016/j.neuroimage.2008.11.007.
Smith, S. M. and Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1):83–98, 2009.
Stelzer, J., Chen, Y., and Turner, R. Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): Random permutations and cluster size control. NeuroImage, 65(C):69–82, January 2013.