_images/cosmomvpa_banner.png

A multi-modal, multi-variate pattern analysis (MVPA) toolbox in Matlab / GNU Octave for cognitive neuroscientists.

CoSMoMVPA

  • State-of-the art, yet simple to use MVPA implementations.

  • Runs on the Matlab and GNU Octave platform, on MS Windows, OSX, and GNU/Linux.

  • Handles fMRI volumetric, fMRI surface-based, and MEEG data through a uniform data structure.

  • Support for a wide range of data formats.

  • Searchlights in the volume, on the surface, over sensors, time bins, and frequency bands.

  • Multiple-comparison correction using Threshold-Free Cluster Enhancement Monte Carlo simulations.

  • Extensive documentation, including a variety of runnable scripts and implementation exercises (with solutions).

  • Is Free/Open Source Software (MIT License), see http://github.com/CoSMoMVPA/CoSMoMVPA.

_images/icon_demos.png _images/icon_philosophy.png _images/icon_get_started.png _images/icon_download.png _images/icon_modules.png _images/icon_documentation.png _images/icon_exercises.png _images/icon_tips.png _images/icon_faq.png _images/icon_contact.png _images/icon_develop.png _images/icon_thanks.png

News

Changes since last month

Summary

[DOC]    2 code documentation changes

Acknowledgements

- Carolyn McGettigan

All changes

commit 0d8c02bf393e343977455e2ec4f3a077e0e70809
Author: Nikolaas N. Oosterhof <n.n.oosterhof@googlemail.com>
Date:   Fri Apr 26 12:01:10 2024 +0200

    DOC: include GIFTI toolbox

 COPYING                      |  2 +-
 mvpa/cosmo_check_external.m  |  4 ++--
 mvpa/cosmo_surface_dataset.m | 10 +++++++---
 3 files changed, 10 insertions(+), 6 deletions(-)

commit e4b892e03e50c4d4f91a5cfdd5773a1ac20508e3
Author: Nikolaas N. Oosterhof <n.n.oosterhof@googlemail.com>
Date:   Mon Apr 22 18:06:01 2024 +0200

    DOC+ACK: describe the (arguably counterinuitive) sign of two
        classes test in cosmo_stat in more detail. Thanks to #Carolyn
        McGettigan# for a useful question

 mvpa/cosmo_stat.m | 21 +++++++++++++++++----
 1 file changed, 17 insertions(+), 4 deletions(-)